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Development of Novel Catalysts 

• Supported catalysts: 

 - More relevant to commercial catalysts and processes  

 - Fast (high throughput) evaluation 

 - “Heterogeneous” in electronic and catalytic properties 

 

• Single crystal surfaces: 

 - Atomic level understanding from experiments and theory 

 - Materials gap: single crystal vs. polycrystalline materials 

 - Pressure gap: ultrahigh vacuum (UHV: ~10-12 psi) 
 

 

• Need to bridge “materials gap” and “pressure gap” 
   



Bridging           

“Materials Gap” 
 

- Thin films 

- Supported catalyst 

Single Crystal         

Model Surfaces 
 

- UHV studies 

- DFT modeling 

Bridging           

“Pressure Gap” 
 

- Reactor studies 

- Electrochem cells 

From DFT Prediction to Experimental Verification 

Use DFT to assist catalysts design: (activity, selectivity, stability, cost):  

 

- Binding energy calculations (activity, stability) 
 

- Activation barriers and reaction network (selectivity) 
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Examples of DFT prediction and experimental verification:  

 

- Correlating hydrogen binding energy (HBE) with water electrolysis activity 
 

- Correlating hydrogen binding energy (HBE) with hydrogenation activity 
 

- Correlating activation barrier with hydrogenation selectivity 

Outline of Presentation 



Correlating HBE with Water Electrolysis Activity 

Esposito, Hunt & Chen, 

Angew. Chem. Int. Ed. 

49 (2010) 9859 



HER Activity and Hydrogen Binding Energy (HBE) 

[1] Data from: Norskov, Bligaard, Logadottir, Kitchin, Chen, Pandelov, Stimming, J.Electrochem. Soc., 152 (2005)  J23-26. 

• Classic volcano curve observed for the HER is explained by 

Sabatier’sPrinciple (Volmer Step) 

(Tafel Step) 

(Weak) (Strong) 



Reduce Pt Loading with Monolayer (ML) Pt 

Goal:  Supporting ML Pt on Pt-like substrates, such as WC 



Surface HBE (eV)

WC(001) -0.99

Pt(111) -0.46

1 ML Pt-WC(001) -0.43

DFT-calculated per-atom hydrogen 

binding energy (HBE) for WC, Pt, and 1 

ML Pt-WC surfaces with a hydrogen 

coverage of 1/9 ML. 

d-band density of states 

DFT Prediction:  Similar HBE Values between 

Monolayer Pt-WC and Bulk Pt 

Pt WC 

1 atomic 

layer of Pt 



Experimental Verification of Activity and Stability 

HER Activity of 1 ML Pt/WC approaches to that of Pt foil 
 

Esposito, Hunt, Birmire & Chen, Angew. Chem. Int. Ed. 49 (2010) 9859  



DFT Prediction of Stability of Pt/WC and Pt/C 

• Use DFT to compare adhesion of Pt atoms to WC and Pt surfaces: 

Pt-(Substrate) > Pt-Pt 

Pt-(Substrate) < Pt-Pt 

ML configuration 

favored 

Particles 

favored 

Binding Energy Outcome 

Pt 

migration 

ML surface atoms Substrate 
Binding energy                        

/ eV 

(M-X^) - (M-M) BE                        

/ eV 

Pt 

Pt(111) -5.43 0.00 

C(0001) -4.12 1.31 

WC(0001) -6.59 -1.16 

W2C(0001) -6.51 -1.08 



Experimental Verification of HER Stability 

• No change in overpotential observed with time 

• No change in LSV before and after CP 

• XPS and SEM measurements confirmed stability 

Chronopotentiometry Linear Sweep Voltammetry 

Esposito, Hunt & Chen, J. Am. Chem. Soc. 134 (2012) 3025 



Other ML/TMC Electrocatalysts for HER in Acid 

Volcano relationship provides design principles of electrocatalysts 

 
Kimmel , Yang & Chen, J. Catalysis, 312 (2014) 216 
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HER Catalysts in Alkaline Environment 

Volcano relationship also appears to hold in alkaline electrolyte 

 
Sheng et al. Energy & Env. Sci. 6 (2013) 1509 
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Monolayer Bimetallic Surfaces 

Surface Monolayer Subsurface Monolayer 

Surface Alloy 

Modified surface chemical properties due to: 

–Ligand effect – electronic configuration 

–Compressive and tensile strain - lattice mismatch 



DFT Prediction of HBE Values 

Hydrogen binding energy (HBE) can be controlled by surface structures 
 

Kitchin, Norskov, Barteau & Chen,  Phys. Rev. Lett. 93 (2004) 156801 

Murillo, Goda & Chen, J. Am. Chem. Soc. 129 (2007) 7101 
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Controlling Hydrogenation Activity: 
Correlating with Binding Energy 

Low-Temperature Cyclohexene Hydrogenation: 

 

 

 

 

 

Assumption for Higher Hydrogenation Activity: 

• Weakly bonded H atoms 

• Weakly bonded cyclohexene 

Ni/Pt

HH



-80

-60

-40

-20

0

C
y
c

lo
h

e
x

e
n

e
 B

in
d

in
g

 E
n

e
rg

y
 (

k
J

/m
o

l)

-3.0 -2.5 -2.0 -1.5 -1.0

d-band center (eV)

Pt-Fe-Pt

Pt-Co-Pt

Pt-Ni-Pt

Pt-Cu-Pt
Ni(111)

Pt(111)

Ni-Pt-Pt

DFT Calculations of Binding Energies of 

Hydrogen and Cyclohexene 

BE values follow the same trend: Ni-Pt(111) > Ni ~ Pt > Pt-Ni-Pt(111) 
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Low-Temperature Hydrogenation of  

Cyclohexene Due to Weakly Bonded H 

- Weakly bonded M-H leads to low-T hydrogenation 

+ H 

M 

In
te

n
s

it
y

 (
a

rb
. 

u
n

it
s

)

600500400300200

Temperature (K)

Pt-Ni-Pt(111)

Ni-Pt-Pt(111)

Ni(111) Film

Cyclohexane (84 amu)

203 K

171 K

Pt(111)



Binding Energies Correlate with 

Cyclohexene Hydrogenation Activity 

Sabatier’s principle: not too strong, not too weak! 

Volcano relationship allows prediction of hydrogenation activity 
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DFT Prediction of Stable Bimetallic Structures 

21 
 

General Stability includes: 

Admetals – 3d, 4d, 5d 

Host metals – Ni, Pd, Pt 

Vacuum 

0.5 ML H 

0.5 ML O 

Menning & Chen,  

J. Chem. Phys, 130 (2009) 174709 



Experimental Verification of Bimetallic Structures 

Coordination 

Number 
10% H2 at 50 °C—NiPt/C  

Experimental Simulation 

Pt-Pt 1.9 ± 0.8 2.696 ± 0.003 

Pt-Ni 3.5 ± 0.4 3.904 ± 0.007 

 

   

   

Coordination 

Number 
10% H2 at 225 °C—NiPt/C  

Experimental Simulation 

Pt-Pt 2.0 ± 0.7 2.675 ± 0.005 

Pt-Ni 3.8 ± 0.3 4.148 ± 0.008 

 
Coordination 

Number 
APR at 225 °C—NiPt/C  

Experimental Simulation 

Pt-Pt 6.0 ± 1.4 4.429 ± 0.006 

Pt-Ni 1.9 ± 0.8 2.24 ± 0.03 

 

Tupy, Karim, Vlachos, Chen, ACS Catalysis, 2 (2012) 2290 
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Selective Hydrogenation Requires More 

Complicated DFT Calculations  



Predicting Selectivity Requires DFT 

Calculations of Reaction Network 



Experimental Verification on Model Surfaces 



Batch Reactor:  Hydrogenation Activity 



Flow Reactor:  Hydrogenation Selectivity 

Hou, Porosoff, Chen & Wang, J. Catalysis, 316 (2014) 1 



Conclusions 

 

 

• Bimetallic and carbide catalysts offer the advantages of 

reduced cost and enhanced activity, selectivity and stability 
 

• Combined theory, surface science, and catalytic studies are 

critical in design of novel catalytic materials 
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Review: Yu, Porosoff & Chen, “Review of Pt-based Bimetallic Catalysis:  From 

Model Surfaces to Supported Catalysts”, Chemical Reviews, 112 (2012) 5780 


